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ABSTRACT: Near-infrared spectroscopy (NIRS) is a well-established technique for determining the components of foods.
Sample preparation for NIRS is easy, making it suitable for breeding and/or quality evaluation, for which a large number of
samples should be analyzed. We aimed to assess the feasibility of NIRS to estimate parameters that seem to influence consumers’
perception of the seed coat of common beans: dietary fiber (DF), uronic acids (UA), ashes, calcium, and magnesium. We used
reference methods to analyze ground seed coats of 90 common bean samples with a wide range of genetic variability and
cultivated at many locations. We registered the NIR spectra on intact beans and ground seed coat samples. We derived partial
least-squares (PLS) regression equations from a set of calibration samples and tested their predictive power in an external
validation set. For intact beans, only RER values for ashes and calcium are good enough for very rough screening. For ground
seed coat samples, the RPD and RER values for ashes (3.49 and 14.09, respectively) and calcium (3.57 and 12.70, respectively)
are good enough for screening. RPD and RER values for DF (2.60 and 9.15, respectively) and RER values for magnesium (6.57)
also enable rough screening. A poorer correlation was achieved for UA. We conclude that NIRS can help in common bean
breeding research and quality evaluation.
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■ INTRODUCTION
In recent years, legumes have been attributed with health
benefits such as the inhibition of carcinogenesis1,2 and
increased antioxidant capacity,3,4 enhancing their reputation
in developed countries and leading to a demand for higher
sensory qualities. Breeders’ efforts have focused mainly on
improving production and nutrition-related chemical composi-
tion while largely neglecting sensory traits. Recent efforts to
obtain or recover varieties with high organoleptic quality to
supply a growing market have resulted in new bean inbred
lines derived from prestigious Spanish landraces5,6 used in the
Protected Designations of Origin (PDOs) “Mongeta del Ganxet”
and “Fesols de Santa Pau”.
The evaluation of sensory attributes requires trained panelists

working with cooked beans, so handling large numbers of
samples is time-consuming and expensive. Thus, chemical or
instrumental approaches to describe materials objectively would
be useful to evaluate genetic and environmental variation in
sensory traits in breeding programs and to evaluate the sensory
quality of marketable beans.
A few studies dealing with the relationship between chemical

composition and texture properties of common beans have
been reported, but their results are not conclusive for a broad
range of common beans. Low mealiness is favored by high-
protein and low-amylose contents in the whole seed of
common beans,7 and firmness is related to calcium, magnesium,
and soluble pectin contents.8,9 Consumers prefer low seed coat
perception, a property evaluated by rating how much the seed
coat is noticed throughout the mastication of eating cooked
beans. Paradoxically, larger proportions of seed coat with
respect to the whole seed do not result in increased seed coat

perception.10 Seed coat perception correlates negatively with
the pectin content but not with calcium or magnesium,7

although it is well-known that seed coat perception increases
dramatically with increased water hardness.
Bean seed coats are composed of sclereid cells characterized

by thick cell walls composed mainly of fiber having undergone a
secondary process of lignification.11 Pectin is found in the
middle lamellae and its degree of solubilization determines the
degree to which cells separate from one another. Both calcium
and magnesium can cross-link with carboxylate groups of
uronic acids, decreasing the solubilization of pectin, and this
should increase seed coat perception. Presumably, seed coat
perception is influenced not only by the content of components
but by their relative ratios and the interactions among them as
well, which would explain the limited correlations found to
date. Large systematic studies are needed to elucidate this
matter, and one such study is underway in our laboratory.
Nevertheless, standard chemical analyses are also time-

consuming, even for a first rough classification of entries, because
determining the compounds most relevant to sensory
characteristics requires enzymatic approaches, which are slow,
difficult, and expensive. Near-infrared spectroscopy (NIRS) is a
well-established technique for determining the components of
foods12 that can be used on easily prepared samples. NIRS has
been used to analyze legumes: to determine protein, essential
amino acids, fatty acids, carbohydrates, and inorganic
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phosphorus in soy and soy products13−17 and to determine
protein, moisture, fat, fatty acids, ash, starch, alcohol insoluble
solids, total dietary fiber, and functional properties in peas and
chickpeas.18−21 However, few studies have used NIRS in
common beans. Hermida et al.22 obtained a robust calibration
for moisture, protein, starch, and fat in beans ground to a fine
powder, and Hacisalihogu et al.23 predicted protein, starch, and
seed weight in intact common bean seeds. As expected,
statistical values, such as RPD, were higher for ground samples
than for unprocessed beans.
Despite the limited correlations described above, we consider

that data about the composition of common beans could
contribute to a better understanding of the chemical bases
underlying seed coat perception, and this information could be
useful in breeding programs. Thus, we aimed to assess the
feasibility of NIRS for predicting the content of dietary fiber
(DF), uronic acids (UA), ashes, calcium, and magnesium in the
seed coats of common beans to determine the suitability of this
technique for evaluating the large numbers of samples required
for breeding research or quality control of marketable beans.

■ MATERIALS AND METHODS
The experiment was carried out on 90 accessions of Spanish landraces
and inbred lines selected to encompass a wide range of chemical
variation. The beans were cultivated in six locations in Catalonia
(northeastern Spain) and two locations in Asturias (northern Spain)
over 5 years (2004−2008). We included traditional varieties from
Catalonia (Berma,̀ Bitxo, Carai, Castellfollit, Confit, Floreta, Ganxet,
Genoll de Crist, Joan, Planxeta, Rosada, Sastre, Tabella Brisa, and
Vilanovi)́ and from Asturias (Andecha, Cimera, and Xana) as well as
recombinant inbred lines of Xana × Cornell. The group of accessions
had large variability in seed coat perception and composition and
included white and colored beans.
Reference Analysis. The seed coat of common beans accounts for

only 8−15% of the mass of the seed, so it must be separated from the
endosperm prior to analysis to enable its composition to be accurately
determined. To this end, seeds were soaked in deionized water for 24
h, and the seed coat was manually separated from the endosperm and
then dried and ground using a laboratory mill (Perten, 3100) with a
0.4 mm screen. The ground seed coat samples obtained were stored in
polyethylene bags at −18 °C in a nitrogen-modified atmosphere.
Before analysis, samples were further dried at 50 °C for 4 h.
The following traits were analyzed in duplicate by reference

methods in the milled seed coat samples: ashes, calcium, magnesium,
DF, and UA. The ash content was determined according to AOAC
method 923.03.24 Approximately 1 g of milled seed coat was burned at
450 °C, cooled in a desiccator, and weighed soon after reaching room
temperature. Ash extract was obtained by dissolving ashes in 7.5 mL of
3 M nitric acid solution and adding water to make 50 mL. Calcium and
magnesium in diluted ash extract were analyzed by inductively coupled
plasma optical emission spectrometry (ICP-OES) (Optima 3200RL,
Perkin-Elmer, Norwalk, CT). DF and UA were measured by the
Englyst procedure, using a commercial kit (Englyst Fiberzym kit, Novo
Nordisk Bioindustries, Surrey, U.K.). This routine measures DF as
nonstarch polysaccharides (NSP) using enzymatic−chemical methods
and has evolved from the principles laid down by Southgate.25 About
300 mg of seed coat was taken. Starch was hydrolyzed enzymatically;
NSP were isolated by precipitation in ethanol and then hydrolyzed by
sulfuric acid. The constituent neutral sugars and UA were measured by
colorimetry.
Spectra Measurement. Spectra were taken from two kinds of

materials: intact beans and ground seed coat. NIR spectra were
registered directly on the 90 samples of ground seed coat using a
model 6500 spectrophotometer (Foss NIRSystems, Silver Spring,
MD) equipped with a reflectance detector and a rapid content analyzer
module. About 5 g of ground seed coat was placed in a 3 cm diameter
cell holder and gently compressed with a cylindrical piece of metal.

Spectra were recorded every 2 nm between 1100 and 2500 nm and
averaged from 32 scans.

For the 90 samples of unprocessed beans, spectra were registered in
a FOSS XDS near-infrared spectrometer with rapid content analyzer
module. Spectra were recorded every 0.5 nm between 400 and 2500
nm and averaged from 32 scans. About 100 g of intact beans was
placed in a rectangular metallic holder.

For both kinds of materials, the reflectance at each wavelength was
expressed as log(1/R). Three spectra were registered for each sample,
and the average spectrum was used for computations. The ceramic
plates supplied with the instruments were used to obtain the blank
spectrum. Vision software, version 2.51 (Foss NIRSystems), was used
to control the recorder, collect the spectra, and import the data.

Statistical Analyses. First, the reproducibility of the reference
analysis methods was evaluated through the standard error of
laboratory (SEL), calculated as
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where xi,1 and xi,2 are the replicate values obtained for each reference
analysis and N is the entire number of samples.

Spectra of ground seed coats and intact beans were treated
independently. They were all first treated by standard normal variate
(SNV) to remove the multiplicative interference of scatter and particle
size.26 Then, their first and second derivatives were calculated by the
Savitzky and Golay method to reduce peak overlap and eliminate
baseline shift.27 Principal components analysis (PCA) was used to
compare spectra. Partial least-squares (PLS) regression was used to
obtain the equations to correlate NIR spectra and chemical content.

For any trait analyzed (ashes, calcium, magnesium, DF, and UA),
accessions were divided in two groups so that about tow-thirds could
be used for calibration and one-third for external validation.
Calibration and validation accessions were randomly selected, but
they were adjusted so that their content standard deviations were
similar to ensure that the range and distribution of the two groups
would be comparable. PLS regressions for calibration were evaluated
using leave-one-out cross-validation (CV). The coefficient of
determination (R2) and standard error (SE) were calculated for both
cross-validation and external validation or prediction (P). For all of
the parameters analyzed, the mathematical pretreatment that yielded
the minimum standard error of cross-validation (SECV) value was
considered to be optimal. The model’s predictive ability was
assessed with the dimensionless parameters RPD and RER defined
in eqs 2 and 3
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in which SDx is the standard deviation of validation data and SEP is
the standard error of prediction.

Outlier samples having spectra that differed from the population
were detected using the Mahalanobis distance (H) by PCA of SNV’s
spectra. An upper limiting value of H = 3 was chosen. Furthermore,
outlier calibration samples that could not be predicted by the model
were identified as t-outliers. The limit for acceptance was t ≤ 2.5,
where t = |yi − xi| /SECV and yi and xi are the predicted and reference
content of sample i, respectively. Computations were done using
commercial software (Unscrambler v. 9.2, Camo AS, Thondheim,
Norway) and R statistical system (available free of charge through
http://www.r-project.org).

■ RESULTS AND DISCUSSION
All of the constituent contents, determined by the reference
analysis, varied over a wide enough range to enable satisfactory
calibrations (Table 1). The magnitude of the variation is
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probably due to the genetic diversity of the entries, together
with the environmental effects of location and year. DF is the
major component of common bean seed coats, and it can
account for >90% of the composition of the seed coat. Fiber
includes the UA, which make up about one-fifth of the DF. Our
findings for calcium and magnesium content agree with those
reported by Moraghan et al.,30 who showed that both metals
accumulate more in seed coat than in cotyledon. Correlations were
found between some chemical parameters: calcium versus ashes
(r = 0.85, P < 0.001), calcium versus UA (r = 0.31, P < 0.001),

DF versus magnesium (r = 0.34, P < 0.001), and ashes versus
UA (r = 0.25, P < 0.05).
The SNV spectrum shows the usual shape of spectra of food

samples that have a complex composition: many overlapping
chemical-bond vibrations result in broad bands and poorly
defined peaks. The second-derivative treatment yields the
spectra shown in Figure 1. From 1100 to 2500 nm, similar
peaks and troughs can be identified for both kinds of samples,
although higher signal intensity is observed for ground samples.
A few peaks are observed for wavelengths below 1100 nm. The
peak at 1130 nm can be attributed to the C−H stretch second

Table 1. Descriptive Statistics of Cultivated Common Beans (g kg−1 Dry Matter)

calibration set validation set

trait SEL range mean SD range mean SD

DF 15.58 529.57−914.63 738.59 100.76 534.39−909.22 738.92 106.62
UA 5.05 68.89−174.24 124.88 24.74 71.56−171.49 120.97 26.93
ash 1.78 31.63−90.63 53.56 12.65 33.97−87.43 54.90 13.25
Ca 0.65 4.11−25.59 12.64 4.45 4.98−23.64 13.19 5.25
Mg 0.13 1.60−4.96 2.90 0.66 1.62−4.80 2.88 0.72

Figure 1. SNV+2D treatment of mean NIR spectra: (a) intact beans; (b) ground seed coat. Continuous line: spectrum; dashed line, standard
deviation.

Table 2. Statistical Descriptors for the NIR Determinations (Wavelength 1100−2500 nm)

trait sample treatment outliers PLS terms R2
CV SECV R2

val SEP RPD RER SEP/SEL

DF intact SNV 2 6 0.692 51.40 0.411 86.22 1.23 4.35 5.54
ground SNV+2D 0 7 0.890 32.70 0.865 40.95 2.60 9.15 2.63

UA intact SNV+2D 3 5 0.635 13.70 0.506 19.20 1.40 5.20 3.80
ground SNV+2D 0 3 0.676 13.44 0.549 18.09 1.49 5.52 3.58

ash intact SNV+1D 0 5 0.841 5.05 0.761 6.54 2.03 8.19 3.67
ground SNV+2D 1 5 0.933 3.20 0.922 3.80 3.49 14.09 2.13

Ca intact SNV+1D 5 5 0.778 1.99 0.821 2.19 2.40 8.52 3.38
ground SNV+2D 0 5 0.904 1.38 0.922 1.47 3.57 12.70 2.27

Mg intact SNV 8 7 0.447 0.47 0.437 0.54 1.33 5.84 4.10
ground SNV+2D 0 8 0.761 0.31 0.557 0.48 1.50 6.57 3.64
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overtone, whereas the C−H and O−H stretch first overtones
are seen around 1400 nm. Aromatic C−H bonds are perceived
at 1700 nm. The main absorption was seen at 1886, 1916, and
2020 nm; these wavelengths can correspond to water or
carboxylic acids and their derivates, such as amides or
carboxylates. Signals between 2200 and 2300 nm have been
assigned to O−H (water) plus C−C stretch groups, and peaks
above 2300 nm are related to C−H combination tones.28,29

First, a PCA was run for the spectra with SNV treatment of
all the samples. For ground samples, PC1 and PC2 explain 77
and 12% of the variation, respectively, and only one H-outlier
was found. For intact beans samples, PC1 and PC2 explain 60
and 26% of the variation, respectively, and three H-outliers
were found. Although the spectra of the H-outliers differed
from those of the others, they were in the range of the set
values for all target components. Nevertheless, these samples
were not included in further computations. The remaining
samples were divided into two groups: 59 and 57 for calibration
of ground and intact beans, respectively, and 30 for external
validation.

Figure 2. Predicted versus reference dietary fiber content for ground
seed coat validation samples.

Figure 3. Predicted versus reference uronic acids content for ground
seed coat validation samples.

Figure 4. Predicted versus reference ash content for ground seed coat
validation samples.

Figure 5. Predicted versus reference calcium content for ground seed
coat validation samples.

Figure 6. Predicted versus reference magnesium content for ground
seed coat validation samples.
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To obtain the calibration equations, we defined the optimal
number of PLS terms as the number of factors that did not
significantly decrease the SECV when they were increased.
Nevertheless, to prevent overfitting, an upper limit of optimal
PLS terms was set at 1 PLS factor per 10 samples of calibration
plus 2.31 More t-outliers were detected for intact beans than for
ground seed coat (Table 2). The predictive power of the
models developed was tested with the external validation
samples. Statistics for the optimal treatments considering the
spectrum region comprised between 1110 and 2500 nm are
presented in Table 2. For DF, ashes, and calcium, the predictive
power of the models is better for ground samples than for intact
beans, although the predictive power for UA and magnesium
was similar for both types of samples. For intact beans, only
RER values for ashes and calcium are good enough to enable
very rough screening, whereas the rest of the RPD and RER
values are worse. Taking the whole spectrum from 400 to 2500 nm

does not improve the accuracy of predictions for intact beans
samples.
Figures 2−6 show the comparison of laboratory- and NIRS-

predicted content of ground validation set samples. For DF, the
validation yielded RPD and RER values of 2.60 and 9.15,
respectively. This means NIRS predictions enable rough
screening, which can be very useful in the early stages of a
breeding program. However, the RPD and RER values for UA
(1.49 and 5.52, respectively) limit the application of NIRS.
Although NIRS has been widely used to determine DF in different
foods,32,33 references to UA or pectin are scarce, probably due to
their lower content and the fact that their molecules are associated
with other fiber components, which makes it more difficult to find
specific absorption bands.34,35

NIRS can determine mineral content because these elements
establish bonds with certain functional groups of organic
compounds. Both electrostatic and chelating bonded mineral
elements can cause certain peaks in the infrared spectrum.

Figure 7. Regression coefficients for second-derivative models: (a) uronic acids; (b) ashes; (c) calcium.
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Therefore, ashes and several elements have been analyzed by
NIRS in foods or plants.17,36−39 In the seed coat of beans, the
association of calcium or magnesium with carboxylate groups of
UA can lead to their cross-linking. On the one hand, RPD and
RER values obtained for ashes (3.49 and 14.09, respectively)
and calcium (3.57 and 12.70, respectively) are considered fair
and suggest that NIRS can be used for screening. On the other
hand, the RER value for magnesium (6.57) is acceptable for
rough screening, but the RPD value (1.50) is too low. To
understand the different results obtained for the two metals, it
is important to note that calcium is 5 times more abundant than
magnesium in the seed coat of beans.
The regression coefficients for DF and magnesium (not

shown) are erratically spread throughout the entire spectrum,
with no wavelength region showing a differentiated contribu-
tion to the calibration equations. However, on the one hand,
wavelengths around 1400 nm and above 2240 nm show high
regression coefficients for the calibration for ashes and calcium
(Figure 7). These wavelengths have been attributed to the
interactions between minerals and O−H tones and C−H
combination tones, respectively.36,40 On the other hand, the
regression coefficients for UA, calcium, and ashes show the
extreme values in the region of 1880−2080 nm (Figure 7),
where the most intensive peaks are present in the second-
derivative spectrum. According to the literature, for the
determination of mineral elements, such wavelengths have
been attributed to the interaction between mineral ions and
O−H tones, especially water.36 Furthermore, a higher
absorption in this region has been reported for polygalacturonic
acids with respect to other carbohydrates,34 due to the presence
of carboxylic acids and their derivates. Thus, carboxylic acids
and carboxylates and their interactions with calcium can be
responsible for the elevated regression coefficients for calcium
and UA from 1880 to 2080 nm. The strong correlation between
ashes and calcium content (r = 0.85, P < 0.001) can also explain
the relevance of these compounds for ashes. Magnesium should
interact with UA in the same way as calcium does, but the lower
magnesium content makes it difficult to obtain more significant
regression coefficients in this zone.
A PLS regression taking into account only the wavelengths

between 1880 and 2080 nm, instead of the whole spectrum,
improved the predictive accuracy for calcium: the RPD and
RER values obtained (4.21 and 14.96, respectively) were
slightly higher than those obtained with the whole registered
spectrum (3.57 and 12.70, respectively). However, the RPD
and RER values for UA and ashes did not improve. Another
attempt was performed for calcium and ashes considering the
wavelengths regions 1340−1525, 1880−2080, and 2240−2430 nm
simultaneously, but it did not yield better results.
Another parameter used to assess the goodness of fit of a

predictive model is the SEP/SEL ratio,19,31,41 which compares
the predictive accuracy of NIR measurements and the precision
of the reference method. The values of SEP/SEL obtained for
dietary fiber, ash, and calcium (between 2 and 3) indicate good
precision for NIRS determinations according to the criteria
described by Ruiz-Jimenez,31 whereas the values obtained for
uronic acids and magnesium (between 3 and 4) indicate
medium precision.
It should be pointed out that although validation accessions

were not used at all to develop the calibration equations, they
were taken from the same pool as the calibration ones. Then,
the model should be amplified, retested, and revalidated with

data of other accessions that we will use in future studies on
breeding.
In summary, to optimize the selection process in a breeding

program, a great number of phenotypes must be quickly
evaluated to decide which progenies will be used to found the
next generation. NIR spectra of milled common bean seed
coats can provide enough information about the chemical
components related to sensory attributes to help in the
phenotyping work, although the knowledge of the correlations
between both chemical and sensory characteristics should be
improved. NIRS can also help in monitoring the sensory
properties of marketable seeds. Time and money saved through
the use of this technique can increase both the efficiency of the
breeding programs and the quality control of the marketable
beans.
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E.; Nuez, F. Variability in some texture characteristics and chemical
composition of common beans (Phaseolus vulgaris L.). J. Sci. Food
Agric. 2006, 86, 2445−2449.
(8) Wang, C. R.; Chang, K. C.; Grafton, K. Canning quality
evaluation of pinto and navy beans. J. Food Sci. 1988, 53, 772−776.
(9) Quenzer, N. M.; Huffman, V. L.; Burns, E. E. Some factors
affecting pinto bean quality. J. Food Sci. 1978, 43, 1059−1061.
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